An Empirical Study of w-Cutset Sampling for Bayesian Networks
نویسندگان
چکیده
The paper studies empirically the time-space trade-off between sampling and inference in the cutset sampling algorithm. The algorithm samples over a subset of nodes in a Bayesian network and applies exact inference over the rest. As the size of the sampling space decreases, requiring less samples for convergence, the time for generating each single sample increases. Algorithm wcutset sampling selects a sampling set such that the induced-width of the network when the sampling set is observed is bounded by w, thus requiring inference whose complexity is exponentially bounded by w. In this paper, we investigate the performance of w-cutset sampling as a function of w. Our experiments over a range of randomly generated and real benchmarks, demonstrate the power of the cutset sampling idea and in particular show that an optimal balance between inference and sampling benefits substantially from restricting the cutset size, even at the cost of more complex inference.
منابع مشابه
Cutset sampling for Bayesian networks Cutset sampling for Bayesian networks
The paper presents a new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest. Cutset sampling is a network structure-exploiting application of the Rao-Blackwellisation principle to sampling in Bayesian networks. It improves convergence by exploiting memory-based inference algorithms. It can also be viewed as an anytime appro...
متن کاملCutset Sampling for Bayesian Networks
The paper presents a new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest. Cutset sampling is a network structure-exploiting application of the Rao-Blackwellisation principle to sampling in Bayesian networks. It improves convergence by exploiting memory-based inference algorithms. It can also be viewed as an anytime appro...
متن کاملApproximation Algorithms for Probabilistic Reasoning: Sampling and Iterative Inference
The complexity of the exact inference increases exponentially with size and complexity of the network. As a result, the exact inference methods become impractical for large networks and we seek to approximate the results. A variety of approximation methods exist. This research focuses on two approximation methods for finding posterior marginals P (xi|e) in Bayesian networks: iterative belief up...
متن کاملCutset Sampling with Likelihood Weighting
The paper extends the principle of cutset sampling over Bayesian networks, presented previously for Gibbs sampling, to likelihood weighting (LW). Cutset sampling is motivated by the Rao-Blackwell theorem which implies that sampling over a subset of variables requires fewer samples for convergence due to the reduction in sampling variance. The scheme exploits the network structure in selecting c...
متن کامل